Part Number Hot Search : 
17000 CL705L2 2SD2052P MAX3861D 2SD17 MK12H MAX618 NTE72
Product Description
Full Text Search
 

To Download TDA5240 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  november 96 product specification file under integrated circuits, ico1 re philips semiconductors
philips semiconductors product specification brushless dc motor drive circuit TDA5240t features .full-wave commutation (using push/pull drivers at the output stages) without position sensors .built-in start-up circuit .optimum commutation independent on motor type or motor loading .built-in flyback diodes .three push-pull outputs: -0.85 a output current -built-in current limiter .thermal protection .soft slope outputs for low radiation. .low current consumption by adaptative base-drive .tacho output without extra sensor. .comparator for external position generator (pg) signal .built-in multiplexer combining internal fg and external pg signal on one pin for easy use with a controlling microprocessor .linear control of the output stages .pg signal output. applications .general purpose spindle driver ( e.g. vcr scanner motor). general description the TDA5240t is a bipolar integrated circuit used to drive brushless dc motors in full-wave mode. the device senses the rotor position using an emf-sensing technique and is ideally suited as a drive circuit for vcr scanner motors. quick reference data measured over full voltage and temperature ranges symbol parameter min. typo max. unit vp ium vo supply voltage range (note 1 ) 4 0.6 18 1 1.05 ~ current limiting 0.85 0.93 output voltage at 10 = 100 ma(upper + lower transistor) note 1. an unstabilized supply can be used; transients of 2 v allowed with max slope 0.1 v/j.ls. 8 2/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t ordering information package type number name description version sot163ah17 TDA5240t so20l 20-pin small-outline; plastic fig.1 power derating curve 3119 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t block diagram vp r cap-cpc , ctlif'i . capst - mot1 - .. mot2 capcdsi capcdm captii i i pgouti - . ,,1 ~i - mot3 - pgfg '\' r' - imoto - t l pglfr .gnd2- -tnd1- j fig.2 block diagram. . november 96 4/19
philips semiconductors product specification TDA5240t brushless dc motor drive circuit november 96 5/19 pinning symbol pin description gnd1 1 ground (0 v) motor supply return for output stages n.c. 2 not connected mot2 3 driver output 2 n.c. 4 not connected v p 5 positive supply voltage pgin 6 position generator: input from the position detector sensor to the position detector stage (optional) fgpg 7 fg/pg (open collector) gnd2 8 ground supply return for control circuits pgout 9 position generator output of the position detector stage capcdm 10 external capacitor connection for commutation delay timing capcds 11 external capacitor connection for commutation delay timing copy capst 12 external capacitor connection for startup oscillator capti 13 external capacitor connection for timing ctl in 14 noninverting input of the control amplifier mot0 15 input from the start point of the motor coils capcpc 16 external capacitor for stability of control loop n.c. 17 not connected mot3 18 driver output 3 n.c. 19 not connected mot1 20 driver output 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 gnd1 n.c. mot2 v p pgin fgpg gnd2 pgout capcdm nc mot1 n.c. mot3 n.c. capcpc mot0 ctl in capst capti capcds TDA5240t fig. 3 pin configuration
philips semiconductors product specification brushless dc motor drive circuit TDA5240t functional description the TDA5240t offers a sensorless three phase motor drive function. it is unique in its combination of sensorless motor drive and full-wave drive. the TDA5240t offers protected outputs capable of handling high currents and can be used with star or delta connected motors. it can easily be adapted for different motors and applications. the TDA5240t offers the following features: .sensorless commutation by using the motor emf .built-in start-up circuit .optimum commutation, independent of motor type or motor loading .built-in flyback diodes .three phase full-wave drive .high output current (0.85 a) .outputs protected by current limiting and thermal protection of each output transistor .low current consumption by adaptive base-drive .soft slope outputs for low radiation .accurate frequency generator (fg) by using the motor emf .comparator for external position generator (pg) signal .built-in multiplexer combining internal fg and external pg signals on one pin for easy use with a controlling microprocessor .linear control of the output stages. limiting values in accordance with the absolute maximum rating system (iec 134). symbol parameter min. unit vp vi vo vo vi i ptot supply voltage v v v v v input voltage; all pins except vp (vi < 8 v) -0.3 gnd -1 max. 18 vp + 0.5 vp vp + vd 2.5 see power derating curve +150 +70 . output voltage; pgout and pg/fg output voltage; moto, mot1, mot2 and mot3 input voltage; cap-st, cap- ti, cap-cd and cap-dc i total power dissipation -55 -10 c c ~ i tamb i~ge temperature range operating ambient temperature range - 6/19 november 96
philips semiconductors product specification TDA5240t brushless dc motor drive circuit november 96 7/19 characteristics v p = 14.5 v 10%; t amb = 10 ? ?? ? ? ????? ????????? ???????? symbol parameter conditions min typ max unit supply v p supply voltage range note 1 4 18 v i p input current range note 2 5.3 7 ma thermal protection t sd local temperature at temperature sensor causing shutdown 130 140 150 ? t reduction in temperature before switchon after shutdown t sd 30 ? mot0 center tap v i input voltage range 0.5 v p v i i input bias current 0.5 v philips semiconductors product specification TDA5240t brushless dc motor drive circuit november 96 8/19 symbol unit max typ min conditions parameter pg in v i input voltage range 0.3 +5 v i b input bias current 650 na r i input resistance 5 30 k v csw comparator switching level 86 93 107 mv +/v iamp comparator input hysteresis 8 mv pg out (open collector) v ol output voltage low i o = 1.6 ma 0.4 v v ohmax output voltage high v p v t thl transition time high-to-low; cl = 50 pf; rl = 10 k 0.5  s t pl pulse width low 4 10  s fg/pg (open collector) v ol output voltage low i o =1.6 ma 0.4 v v ohmax maximum output voltage high v p v t thl transition time hightolow cl = 50 pf rl = 10 k 0.5  s ratio of fg frequency and commutation frequency 1:2  duty factor 50 % t pl pulse width low after a pg in pulse 5 7 15  s capst i i output sink current 1.5 2.0 2.5  a i o output source current 2.5 2.0 1.5  a v swl lower switching level 0.20 v v swm middle switching level 0.30 v v swh upper switching level 2.20 v capti i i output sink current 22 30 38  a i oh output source current high 70 63 56  a i ol lower source current low 6.0 5.3 4.6  a v swl lower switching level 50 mv v swm middle switching level 0.30 v v swh upper switching level 2.20 v capcdm i i output sink current 10.6 16.2 22  a i o output source current 5.3 8.1 11  a i i /i o ratio of sink to source current 1.85 2.05 2.25 v il input voltage level low 780 860 940 mv v ih input voltage level high 2.3 2.4 2.55 v
philips semiconductors product specification TDA5240t brushless dc motor drive circuit november 96 9/19 symbol unit max typ min conditions parameter capcds i i output sink current 10.1 15.5 20.9 a i o output source current 20.9 15.5 10.1 a i i /i o ratio of sink to source current 0.9 1.025 1.15 v il input voltage level low 780 860 940 mv v ih input voltage level high 2.3 2.4 2.55 v capcpc i i output sink current 1 3 ma i o output source current 100 30 a notes: 1. an unstabilized supply can be used; transients of 2 v allowed with max slope 0.1 v/ s. 2. all other inputs at 0 v; all outputs at v p and i o = 0 a. 3. switching levels with respect to mot1, mot2 and mot3. 4. drivers are in high impedance offstate. 5. the outputs are shortcircuit protected by limiting the current and the ic temperature. fig. 4 switching levels
philips semiconductors product specification TDA5240t brushless dc motor drive circuit november 96 10/19 application information introduction figure 5 shows fullwave driving of a three phase motor requires three pushpull output stages. in each of the six possible sta tes two outputs are active, one sourcing and one sinking current. the third output presents a high impedance to the motor which enables measure ment of the motor emf in the corresponding motor coil by the emf comparator at each output. the commutation logic is responsible for contro l of the output transistors and selection of the correct emf comparator. the zerocrossing in the motor emf (detected by the comparator selected by the commutation logic) is used to calculate the corr ect moment for the next commutation, that is, the change to the next output state. the delay is calculated (depending on the motor loading ) by the adaptive commutation delay block. because of high inductive loading the output stages contain flyback diodes. the output stages are also protected by a current l imiting circuit and by thermal protection of the six output transistors. the zerocrossings can be used to provide speed information such as the tacho signal fg. a vcr scanner also requires a pg phase sensor. this circuit has an interface for a simple pickup coil. a multiplexer circuit is also provided to combine the fg and pg signal s in time. the TDA5240 is providing 1 multiplexed fg pg signal: pin7 (so20) fgpg 3 times the number of pole pairs. a pg output signal is gene rated; pulse width is typically 7 m s. table 1 output states state mot1 mot2 mot3 1 z l h 2 h l z 3 h z l 4 z h l 5 l h z 6 l z h in table 1, the sequence of the six possible states of the outputs has been depicted
philips semiconductors product specification brushless dc motor drive circuit TDA5240t fig.5 typical application of the TDA5240t. 11/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t analog control of the motor output voltages is achieved by an internal operational amplifier which tranfer gain is internally fixed. compensation of the motor pole is done by an external capacitor (cap cpc). both grounds gnd1 and gnd2 must be connected together. adjustments the system has been designed in such a way that the tolerances of the application components are not critical. however, the approximate values of the following components must still be determined: .the start capacitor; this determines the frequency of the start oscillator .the two capacitors in the adaptive commutation delay circuit. these are important in determining the optimum moment for commutation, depending on the type and loading of the motor ~ the timing capacitor; this provides the system with its timing signals (this deals with the application note an94070) the start capacitors (cap-st) this capacitor determines the frequency of the start oscillator. it is charged and discharged, with a current of 2 ~a, from 0.05 to 2.2 v and back to 0.05 v. the time taken to complete one cycle is given by: tstart = (2.15 x c)s (with c in ~f) the start oscillator is reset by a commutation pulse and so is only active when the system is in the start-up mode. a pulse from the start oscillator will cause the outputs to change to the next state (torque in the motor) .if the movement of the motor generates enough emf the TDA5240t will run the motor. if the amount of emf generated is insufficient, then the motor will move one step only and will oscillate in its new position. the amplitude of the oscillation must decrease sufficiently before the arrival of the next start pulse, to prevent the pulse arriving during the wrong phase of the oscillation. the oscillation of the motor is given by: 1 = x ( kt x i x j )2 'osc 12/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t where: kt = torque constant (n.m/a) i = current (a) p = number of magnetic pole-pairs j = inertia j (kg/m2) example: j = 72 x 10---6 kg/m2, k = 25 x 10-3 n.m/a, p = 6 and i = 0.5 a; this gives f osc = 5 hz. if the damping is high then a start frequency of 2 hz can be chosen or t = 500 ms, thus c = 0.5/2 = 0.25 ~f, (choose 220 nf). the adaptive commutation delay (cap-cdm and cap-cds) in this circuit capacitor cap-cdm is charged during one commutation period, with an interruption of the charging current during the diode pulse. during the next commutation period this capacitor (cap-cdm) is discharged at twice the charging current. the charging current is 8.1 j.la and the discharging current 16.2 j.la ; the voltage range is from 0.9 to 2.2 v. the voltage must stay within this range at the lowest commutation frequency of interest, fc1 : 8.1 -5 ixt:3 c= -~ (c in nf) -fc1 if the frequency is lower, then a constant commutation delay after the zero-crossing is generated by the discharge from 2.2 to 0.9 vat 16.2i1a. maximum delay = (0.076 x c) ms (witch c in nf) example: nominal commutation frequency = 900 hz and the lowest usable frequency = 400 hz, so: cap-cdm = ~= 15.6 (choose 18 nf) the other capacitor, cap-cds, is used to repeat the same delay by charging and discharging with 20 ~. the same value can be chosen as for cap-cdm. figure 7 illustrates typical voltage waveforms i ! com i i com com i com i voltoge l\ i rt\ i rr\ i i i on cap-dc i ~ i ~ i ~ i i i t~ i i 1 zcr zcr zcr zcr zcr zcr fig.7 cap-cdm and cap-cds voltage waveforms in normal running mode. (zcr=zero-crossing ; com=commutation) icom i icom i the timing capacitor (cap- ti) capacitor cap- ti is used for timing the successive steps within one commutation period; these steps include some internal delays. . 13/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t the most important function is the watchdog time in which the motor emf has to recover from a negative diode-pulse back to a positive emf voltage (or vice versa). a watchdog timer is a guarding function that only becomes active when the expected event does not occur within a predetermined time. the emf usually recovers within a short time if the motor is running normally ( ? ms ). however, if the motor is motionless or rotating in the reverse direction, then the time can be longer ( ? ms ). a watchdog time must be chosen so that it is long enough for a motor without emf (still) and eddy currents that may stretch the voltage in a motor winding; however, it must be short enough to detect reverse rotation. if the watchdog time is made too long, then the motor may run in the wrong direction (with little torque). the capacitor is charged, with a current of 57 i1a, from 0.2 to 0.3 v. above this level it is charged, with a current of 5 jla, up to 2.2 v only if the selected motor emf remains in the wrong polarity (watchdog function). at the end, or, if the motor voltage becomes positive, the capacitor is discharged with a current of 28 11 a. the watchdog time is the time taken to charge the capacitor, with a current of 5 jla, from 0.3 to 2.2 v. the value of cap- ti is given by: = 2.63 tm (c in nf ; t in ms) example: if after switching off, the voltage from a motor winding is reduced, in 3.5 ms, to within 20 mv (the offset of the emf comparator), then the value of the required timing capacitor is given by: c = 2.63 x 3.5 = 9.2 (choose 10 nf) typical voltage waveforms are illustrated by fig. 8. voltoge on cap- ti mkai34 if the chosen value of cap- ti is too small, then oscillations can occur in certain positions of a blocked rotor. if the chosen value is too large, then it is possible that the motor may run in the reverse direction (synchronously with little torque). fig.8 typical cap- ti and vmot1 voltage waveforms in normal running mode. . november 96 14/19
philips semiconductors product specification brushless dc motor drive circuit TDA5240t other design aspects there are other design aspects concerning the application of the TDA5240t besides the commutation function. they are: .generation of the tacho signal fg .built-in interface for a pg sensor. .reliability . fg signal the fg signal is generated in the TDA5240t by using the zero-crossing of the motor emf from the three motor windings. every zero-crossing in a (star connected) motor winding is used to toggle the fg output signal. the fg frequency is therefore half the commutation frequency. all transitions indicate the detection of a zero-crossing (except for pg). the negative-going edges are called fg pulses because they generate an interrupt in a controlling microprocessor. the accuracy of the fg output signal oitter) is very good. this accuracy depends on the symmetry of the motor's electromagnetic construction, which also effects the satisfactory functioning of the motor itself. two fg frequencies are given out: 6 times the number of poles pairs or 3 times the number of poles pairs. a pull-up resistor must be connected to pgfg outputs example: a three phase motor with 6 magnetic pole-pairs at 1500 rpm and with a full-wave drive has a commutation frequency of 25 x 6 x 6 = 900 hz, and generates a tacho signal of 450 hz. pg signal the accuracy of the pg signal in applications such as vcr must be high (phase information. this accuracy is obtained by combining the accurate fg signal with the pg signal by using a wide tolerance external pg sensor. the external pg signal (pgin) is only used as an indicator to select a particular fg pulse. this pulse differs from the other fg pulses in that a ahort low-time of 15 ~s after a high to low transition. all other fg pulses have a 50% duty factor (see fig. 9). toleronce on pg in vav vav pg in mot3 pg/fg~~~~ ~ fig.9 timing of the fg and pg signals reliability it is necessary to protect high current circuits and the output stages are protected in two ways: 15/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t .current limiting of the 'lower' output transistors. the 'upper' output transistors use the same base current as the conducting 'lower' transistor (+15%). this means that the current to and from the output stages is limited. .thermal protection of the six output transistors is achieved by each transistor having a thermal sensor that is active when the transistor is switched on. the transistors are switched off when the local temperature becomes too high. 16/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t package outline 0.9 (4x) 0.4 ij r-,oodp d ~ 20 11 ~ 2.45 0.3 2.25 0.1 1.1 1.0 , 0.32 0.23 -,-j 2065 2035 ~ pin 1 ;b - index 1.1 ..,\ 0.5 * oto 8 10 ~ mbc234 [] [] d ij l ~ d 0.49 j 8 0.36 (20x) ~ dimensions in mm fig.10 20-pin small-outline; plastic (so20l;sot163a). 17/19 november 96
philips semiconductors product specification brushless dc motor drive circuit TDA5240t soldering introduction there is no soldering method that is ideal for all ic packages. wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. however, wave soldering is not always suitable for surface mounted ics, or for printed-circuits with high population densities. in these situations reflow soldering is often used. this text gives a very brief insight to a complex technology. a more in-depth account of soldering ics can be found in our "ic package databook" (order code 9398 652 90011 ). . reflow soldering reflow soldering techniques are suitable for all sa packages. reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. several techniques exist for reflowing; for example, thermal conduction by heated belt. dwell times vary between 50 and 300 seconds depending on heating method. typical reflow temperatures range from 215 to 250 c. preheating is necessary to dry the paste and evaporate the binding agent. preheating duration: 45 minutes at 45 c. wave soldering wave soldering techniques can be used for all sa packages if the following conditions are observed: .a double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. .the longitudinal axis of the package footprint must be parallel to the solder flow- .the package footprint must incorporate solder thieves at the downstream end. during placement and before soldering, the package must be fixed with a droplet of adhesive. the adhesive can be applied by screen printing, pin transfer or syringe dispensing. the package can be soldered after the adhesive is cured. maximum permissible solder temperature is 260 oc, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 oc within 6 seconds. typical dwell time is 4 seconds at 250 oc. a mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. repairing soldered joints fix the component by first soldering two diagonally- opposite end leads. use only a low voltage soldering iron (less than 24 v) applied to the flat part of the lead. contact time must be limited to 10 seconds at up to 300 c. when using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 c. 18/19 november 96
philips semiconductors product specification TDA5240t brushless dc motor drive circuit yyyy mmm dd 1 definitions short-form specification e the data in a short-form specification is extracted from a full data sheet with the same type number and title. for detailed information see the relevant data sheet or data handbook. limiting values definition e limiting values given are in accordance with the absolute maximum rating system (iec 60134). stress above one or more of the limiting values may cause permanent damage to the device. these are stress ratings only and operation of the dev ice at these or at any other conditions above those given in the characteristics sections of the specification is not implied. exposure to limi ting values for extended periods may affect device reliability. application information e applications that are described herein for any of these products are for illustrative purposes only. philips semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. disclaimers life support e these products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. philips semiconductors customers using or selling these products for use i n such applications do so at their own risk and agree to fully indemnify philips semiconductors for any damages resulting from such application. right to make changes e philips semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. philips semiconductors ass umes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or m ask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right in fringement, unless otherwise specified. contact information for additional information please visit http://www.semiconductors.philips.com . fax: +31 40 27 24825 for sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com . w koninklijke philips electronics n.v. 1996 all rights reserved. printed in u.s.a. date of release: 11-96 document order number: 9397 750 08756  

data sheet status [1] objective specification preliminary specification product specification product status [2] development qualification production definitions this data sheet contains data from the objective specification for product development. philips semiconductors reserves the right to change the specification in any manner without notice. this data sheet contains data from the preliminary specification. supplementary data will be published at a later date. philips semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. this data sheet contains data from the product specification. philips semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. changes will be communicated according to the customer product/process change notification (cpcn) procedure snw-sq-650a. data sheet status [1] please consult the most recently issued data sheet before initiating or completing a design. [2] the product status of the device(s) described in this data sheet may have changed since this data sheet was published. the l atest information is available on the internet at url http://www.semiconductors.philips.com.


▲Up To Search▲   

 
Price & Availability of TDA5240

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X